Some Conclusions on Modified Wiener Index and Modified Hyper-Wiener Index

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on connectivity and lambda-modified Wiener index

In theoretical chemistry, -modified Wiener index is a graph invariant topological index to analyze the chemical properties of molecular structure. In this note, we determine the minimum -modified Wiener index of graph with fixed connectivity or edge-connectivity. Our results also present the sufficient and necessary condition for reaching the lower bound.

متن کامل

The modified Wiener index of some graph operations

Graovac and Pisanski [On the Wiener index of a graph, J. Math. Chem. 8 (1991) 53 – 62] applied an algebraic approach to generalize the Wiener index by symmetry group of the molecular graph under consideration. In this paper, exact formulas for this graph invariant under some graph operations are presented.

متن کامل

MORE ON EDGE HYPER WIENER INDEX OF GRAPHS

‎Let G=(V(G),E(G)) be a simple connected graph with vertex set V(G) and edge‎ ‎set E(G)‎. ‎The (first) edge-hyper Wiener index of the graph G is defined as‎: ‎$$WW_{e}(G)=sum_{{f,g}subseteq E(G)}(d_{e}(f,g|G)+d_{e}^{2}(f,g|G))=frac{1}{2}sum_{fin E(G)}(d_{e}(f|G)+d^{2}_{e}(f|G)),$$‎ ‎where de(f,g|G) denotes the distance between the edges f=xy and g=uv in E(G) and de(f|G)=∑g€(G)de(f,g|G). ‎In thi...

متن کامل

The hyper-Wiener index of graph operations

Let G be a graph. The distance d(u,v) between the vertices u and v of the graph G is equal to the length of a shortest path that connects u and v. The Wiener index W(G) is the sum of all distances between vertices of G, whereas the hyper-Wiener index WW(G) is defined as WW(G)=12W(G)+12@?"{"u","v"}"@?"V"("G")d (u,v)^2. In this paper the hyper-Wiener indices of the Cartesian product, composition,...

متن کامل

Some remarks on inverse Wiener index problem

The sum of distances between all pairs of vertices W (G) in a connected graph G as a graph invariant was first introduced by Wiener [9] in 1947. He observed a correlation between boiling points of paraffins and this invariant, which has later become known as Wiener index of a graph. Today, the Wiener index is one of the most widely used descriptors in chemical graph theory. Due to its strong co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biophysics

سال: 2015

ISSN: 2330-1686,2330-1694

DOI: 10.12677/biphy.2015.33006