Some Conclusions on Modified Wiener Index and Modified Hyper-Wiener Index
نویسندگان
چکیده
منابع مشابه
A note on connectivity and lambda-modified Wiener index
In theoretical chemistry, -modified Wiener index is a graph invariant topological index to analyze the chemical properties of molecular structure. In this note, we determine the minimum -modified Wiener index of graph with fixed connectivity or edge-connectivity. Our results also present the sufficient and necessary condition for reaching the lower bound.
متن کاملThe modified Wiener index of some graph operations
Graovac and Pisanski [On the Wiener index of a graph, J. Math. Chem. 8 (1991) 53 – 62] applied an algebraic approach to generalize the Wiener index by symmetry group of the molecular graph under consideration. In this paper, exact formulas for this graph invariant under some graph operations are presented.
متن کاملMORE ON EDGE HYPER WIENER INDEX OF GRAPHS
Let G=(V(G),E(G)) be a simple connected graph with vertex set V(G) and edge set E(G). The (first) edge-hyper Wiener index of the graph G is defined as: $$WW_{e}(G)=sum_{{f,g}subseteq E(G)}(d_{e}(f,g|G)+d_{e}^{2}(f,g|G))=frac{1}{2}sum_{fin E(G)}(d_{e}(f|G)+d^{2}_{e}(f|G)),$$ where de(f,g|G) denotes the distance between the edges f=xy and g=uv in E(G) and de(f|G)=∑g€(G)de(f,g|G). In thi...
متن کاملThe hyper-Wiener index of graph operations
Let G be a graph. The distance d(u,v) between the vertices u and v of the graph G is equal to the length of a shortest path that connects u and v. The Wiener index W(G) is the sum of all distances between vertices of G, whereas the hyper-Wiener index WW(G) is defined as WW(G)=12W(G)+12@?"{"u","v"}"@?"V"("G")d (u,v)^2. In this paper the hyper-Wiener indices of the Cartesian product, composition,...
متن کاملSome remarks on inverse Wiener index problem
The sum of distances between all pairs of vertices W (G) in a connected graph G as a graph invariant was first introduced by Wiener [9] in 1947. He observed a correlation between boiling points of paraffins and this invariant, which has later become known as Wiener index of a graph. Today, the Wiener index is one of the most widely used descriptors in chemical graph theory. Due to its strong co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysics
سال: 2015
ISSN: 2330-1686,2330-1694
DOI: 10.12677/biphy.2015.33006